Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Wednesday, September 13, 2017

Wearable sensors to predict improvement following an exercise intervention in patients with knee osteoarthritis

These sensors should be able to be used to diagnose EXACT problems in stroke knees and then prescribe EXACT stroke protocols to correct those problems. This is so fucking simple. Objectively diagnose the problem, create a stroke protocol that fixes the problems, distribute that information worldwide.  And stroke survivors recover.
https://jneuroengrehab.biomedcentral.com/articles/10.1186/s12984-017-0309-z
Journal of NeuroEngineering and Rehabilitation201714:94
Received: 7 February 2017
Accepted: 7 September 2017
Published: 12 September 2017

Abstract

Background

Muscle strengthening exercises consistently demonstrate improvements in the pain and function of adults with knee osteoarthritis, but individual response rates can vary greatly. Identifying individuals who are more likely to respond is important in developing more efficient rehabilitation programs for knee osteoarthritis. Therefore, the purpose of this study was to determine if pre-intervention multi-sensor accelerometer data (e.g., back, thigh, shank, foot accelerometers) and patient reported outcome measures (e.g., pain, symptoms, function, quality of life) can retrospectively predict post-intervention response to a 6-week hip strengthening exercise intervention in a knee OA cohort.

Methods

Thirty-nine adults with knee osteoarthritis completed a 6-week hip strengthening exercise intervention and were sub-grouped as Non-Responders, Low-Responders, or High-Responders following the intervention based on their change in patient reported outcome measures. Pre-intervention multi-sensor accelerometer data recorded at the back, thigh, shank, and foot and Knee Injury and Osteoarthritis Outcome Score subscale data were used as potential predictors of response in a discriminant analysis of principal components.

Results

The thigh was the single best placement for classifying responder sub-groups (74.4%). Overall, the best combination of sensors was the back, thigh, and shank (81.7%), but a simplified two sensor solution using the back and thigh was not significantly different (80.0%; p = 0.27).

Conclusions

While three sensors were best able to identify responders, a simplified two sensor array at the back and thigh may be the most ideal configuration to provide clinicians with an efficient and relatively unobtrusive way to use to optimize treatment.

No comments:

Post a Comment