Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Wednesday, December 7, 2016

Neurorobotic hand exoskeleton restores grasp function to quadriplegics

They do mention stroke in the writeup, but it would seem to me that this could only possibly help high functioning stroke patients. Since my brain control area for the hand is dead the current configuration to sense motor activity in the motor cortex would not work.

Neurorobotic hand exoskeleton restores grasp function to quadriplegics


A consortium of European scientists has successfully restored grasp function to six quadriplegics using a non-invasive hybrid brain-neural hand exoskeleton. The system was developed by researchers at the University of Tübingen, Germany, The BioRobotics Institute at the Scuola Superiore Sant’Anna, Italy, and the Guttmann Institute in Spain. The study participants were able, for example, to eat and drink independently at a restaurant. While it was commonly assumed that outside-the-lab brain-machine interface(BMI)-based restoration of hand function would require surgical implantation of neural electrodes, the study – now featured in the inaugural issue of Science Robotics – used electric brain activity recorded from the scalp, thus avoiding any surgical procedure.
The Tübingen researchers say the new approach will significantly improve quality of life after high cervical spinal cord injury or stroke. The system translates brain electric activity and eye movements into hand opening and closing motions, restoring intuitive grasp function to an almost normal level, the study shows. Thanks to portable and wireless hardware integrated into a wheelchair, participants could freely move and use the system in their everyday life environment.
Surjo Soekadar, the responsible physician and lead author of the study, says the technology can be adapted to do even more: "Next, we are planning the development of intelligent, context-sensitive and cosmetically unobtrusive neurorobotic systems which patients can mount on their bodies entirely unassisted”.
Besides the immediate improvement in the ability to perform activities of daily living as shown by the European research consortium, recent clinical studies suggest that repeated use of such brain-controlled exoskeletons could induce neurological recovery after spinal cord injury or stroke. This BMI-related neuroplasticity, as Dr. Soekadar underlines, may also become a powerful tool to treat neuropsychiatric disorders, such as depression or cognitive disorders which currently represent the third leading cause of global disability-adjusted life years (DALY), i.e. the total number of years lost to illness, disability, or premature death. While large-scale clinical trials will be required for further validation, the system introduced by Dr. Soekadar and his colleagues may now pave the way for such long-term and out-of-the-lab studies.

Attached files

  • Dr. Surjo R. Soekadar (left) with a study participant. Photo: Surjo R. Soekadar

No comments:

Post a Comment