Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Monday, May 29, 2017

Neuronal protein kinase signaling cascades and excitotoxic cell death

Even worse I bet your doctor and hospital have done nothing with this since it came out in June 2001.
https://www.ncbi.nlm.nih.gov/pubmed/11462762 June 2001

Abstract

Perturbation of normal survival mechanisms may play a role in a large number of disease processes. Glutamate neurotoxicity, particularly when mediated by the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors, has been hypothesized to underlie several types of acute brain injury, including stroke. Several neurological insults linked to excessive release of glutamate and neuronal death result in tyrosine kinase activation, including p44/42 mitogen activated protein (MAP) kinase. To further explore a role for MAP kinase activation in excitotoxicity, we used a novel tissue culture model to induce neurotoxicity. Removal of the endogenous blockade by Mg2+ of the NMDA receptor in cultured hippocampal neurons triggers a self perpetuating cycle of excitotoxicity, which has relatively slow onset, and is critically dependent on NMDA receptors and activation of voltage gated Na+ channels. These injury conditions led to a rapid phosphorylation of p44/42 that was blocked by MAP kinase kinase (MEK) inhibitors. MEK inhibition was associated with protection against synaptically mediated excitotoxicity. Interestingly, hippocampal neurons preconditioned by a sublethal exposure to Mg(2+)-free conditions were rendered resistant to injury induced by a subsequently longer exposure to this insult; the preconditioning effect was MAP kinase dependent. The MAP kinase signaling pathway can also promote polypeptide growth factor mediated neuronal survival. MAP kinase regulated pathways may act to promote survival or death, depending upon the cellular context in which they are activated.
PMID:
11462762
[Indexed for MEDLINE]

No comments:

Post a Comment