Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Thursday, August 23, 2018

Ultrasound imaging gauges muscle tightness after stroke

With absolutely zero interventions that cure spasticity this doesn't help much.
https://www.auntminnie.com/index.aspx?sec=ser&sub=def&pag=dis&ItemID=121645

By Kate Madden Yee, AuntMinnie.com staff writer
August 22, 2018 -- Ultrasound strain imaging can be an effective tool for assessing poststroke muscle spasticity or tightness, a condition that affect two-thirds of stroke survivors, according to a study published in the August issue of the Journal of Ultrasound in Medicine.
The effects of spasticity on muscle after a stroke can include contractures, limited range of joint motion, and pain. Spasticity manifests most often around the elbow, the wrist, and the ankle, but it can also affect other parts of the body, including the biceps brachii muscle, or elbow flexors.
There hasn't been an effective way to measure spasticity to determine which interventions(There are none, baclofen and botox are not cures for spasticity.) are best for patients after a stroke, wrote a team led by Dr. Jing Gao of Weill Cornell Medicine in New York City.
"To date, this process [of measuring spasticity] remains challenging because of the lack of a reference standard. ... It would be ideal to have a noninvasive imaging technique to quantify the mechanical properties and dynamic movement of spastic muscle to assist clinicians in the diagnosis of spasticity, monitoring of disease progression, and evaluation of treatment response in stroke rehabilitation," the group wrote.
Ultrasound strain imaging has been shown to be useful for assessing the stiffness of skeletal muscle, but little is known about using the technique to assess skeletal muscle dynamic motion. Gao and colleagues sought to evaluate the feasibility of strain imaging for assessing spasticity in the biceps of stroke survivors (J Ultrasound Med, August 2018, Vol. 37:8, pp. 2043-2052).
The study included eight healthy volunteers and seven stroke survivors recruited between February and July 2017; the investigators gathered ultrasound strain imaging data from all participants.
They found a significant increase in muscle stiffness, represented by a decrease in muscle axial strain in the spastic biceps brachii muscles compared with the nonspastic muscles. The researchers also found decreased lengthening and shortening capability (i.e., longitudinal strain ratio) and tissue velocity in the spastic muscles versus the nonspastic ones.
Ultrasound strain imaging measures for biceps brachii muscle
Measure Nonspastic biceps Spastic biceps
Axial strain ratio (90°) 4.87 3.13
Axial strain ratio (0°) 4.02 2.65
Longitudinal strain ratio (90° to 0°) 5.79 3.12
Longitudinal strain ratio (0° to 90°) 6.56 3.25
Tissue velocity (90° to 0°) 2.16 1.33
Tissue velocity (0° to 90°) -2.09 -0.95
The study suggests that ultrasound strain imaging could help clinicians better assess a patient's poststroke spasticity and perhaps better manage(Why not cure? Are you that lazy?)  the condition, Gao and colleagues concluded.
"Ultrasound strain imaging is a useful imaging tool for determining increased stiffness and decreased dynamic displacement in spastic biceps brachii muscles(What about finger flexors?) by assessing the axial strain, longitudinal strain, and tissue velocity of the muscle," they wrote. "These noninvasive strain imaging markers may have potential in improving the point-of-care management of chronic poststroke spasticity."

No comments:

Post a Comment