Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Thursday, October 30, 2014

Nano Ruffles in Brain Matter

How might this explain problems we are having post-stroke?
http://www.alphagalileo.org/ViewItem.aspx?ItemId=146703&CultureCode=en
Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function

An accumulation of a protein called amyloid-beta into large insoluble deposits called plaques is known to cause Alzheimer's disease. One aspect of this illness that has not received much attention is which role the structure of the brain environment plays. How do macromolecules and macromolecular assemblies, such as polysaccharides, influence cell interaction in the brain? In a paper published in the journal "Proceedings of the National Academy of Sciences", Prof. Prasad Shastri and graduate student Nils Blumenthal, in collaboration with Prof. Bernd Heimrich and Prof. Ola Hermanson, have discovered that macromolecules or support cells like astrocytes provide well-defined physical cues in the form of random roughness or ruffles that have a crucial role in promoting and maintaining healthy interactions between cells in the hippocampus. This brain area is regarded as the brain's GPS system: It processes and stores spatial information. In Alzheimer's disease, this area degenerates. Shastri says, "It has been long thought that only biological signals have a role in health and function of brain cells, but here we show that the structure of the molecules that surround these cells may be equally important."

The researchers found that there is a restricted regime of roughness at the nanoscale that is beneficial to neurons. If the magnitude of roughness exceeds or is below this regime, neurons experience detrimental changes to their function. By analyzing human brain tissue from patients who suffered from Alzheimer's disease, Shastri's team has found a crucial link between regions in the brain that have amyloid-beta plaque accumulation - which are responsible for neuron death - and unfavorable changes to the nanotopography in the tissue surrounding these neurons, that is the features of its surface..

Shastri and his co-workers have found that astrocytes provide a nanoscale physical environment that neurons need to function well. "Our discovery shows for the first time that stretch-activated ion channels may have a role in central nervous system function and disease. Hence, our findings offer new pharmacological targets", says Blumenthal. Using synthetic substrates of precise roughness, they found out that stretch-sensitive molecules, including the so-called Piezo-1 ion channel in murine brain cells, direct the interaction between nanotopography, astrocytes and neurons. Former research has shown that the expression of MIB-1, a human analog of Piezo-1, is altered in human Alzheimer's patients.

Prof. Prasad Shastri conducts his research at the Institute for Macromolecular Chemistry and the Excellence Cluster BIOSS Centre for Biological Signalling Studies of the University of Freiburg. Graduate student Nils Blumenthal is funded by BIOSS. Prof. Bernd Heimrich is at the Institute of Anatomy and Cell Biology of the University of Freiburg and Prof. Ola Hermanson is from the Karolinska Institute in Stockholm/Sweden.

No comments:

Post a Comment