Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Tuesday, January 30, 2018

Could a protein called klotho block dementia and aging?

I don't know. WHOM is going to followup? 

Could a protein called klotho block dementia and aging?



Neurologist and neuroscientist Dena Dubal, MD, Ph.D., is taking an innovative approach to battling neurodegenerative diseases like Alzheimer's disease and dementia. Rather than trying to understand the specific mechanisms that cause each disease, she took a step back and asked, "What do all these conditions have in common?"

The answer: old age.
Over time, something happens to our cells and organs, and in the past three decades scientists have begun to unravel exactly what that something is – and the cellular mechanisms our bodies use to fight it.
Dubal, an associate professor of neurology at UC San Francisco, thinks we can use the science of aging to help stave off these .
"Aging is the biggest risk factor for , and cognitive problems are one of the biggest biomedical challenges that we face," she said. "Why don't we just block aging?"
Blocking aging is easier said than done, but Dubal jumped head first into the problem by studying a protein called klotho.
Klotho was named after the Greek fate Clotho, a mythological figure who spun the thread of life and had say over when gods and mortals lived and died. The Japanese researchers who named the protein found that the amount of klotho produced by could affect how long the rodents lived. Other researchers later discovered that humans who naturally have more klotho tend to live longer.
Living longer is one thing, but Dubal, a member of the UCSF Weill Institute for Neurosciences, wanted to know if klotho could help our brains stay healthier and more resilient to cognitive problems. Could klotho levels predict how quickly subjects solved a variety of puzzles that test cognition? In both humans and mice, she found the same result: more klotho meant better cognitive function.
To bring this boost in to everyone, and not just the 20 percent of people who happen to have naturally high klotho, Dubal is testing the protein's potential as a therapeutic. The protein can exist in two forms: the first is anchored to the cell membranes of your organs, mostly your and kidneys; and the second occurs when the protein is cut loose from its anchor and freed to float around the bloodstream. Dubal found that by simply injecting this floating form into mice, she could re-create the cognitive boost she found by genetically increasing klotho.
"We found that those mice that had been treated, within four hours had better brain function," she said. This worked in young mice, old mice, and mice that had a condition similar to Alzheimer's.
Next, Dubal's lab will try to understand how klotho acts on the brain without crossing the blood-brain barrier. And ultimately, could klotho become a therapy for humans to improve brain health and protect against aging and ?
"For humans, the end game really is: how can we increase our 'healthspan?'" said Dubal. "And that may go hand in hand with an increase in life span, because the things that help us to live longer are also the things that help us to live better."
Hear the full story on Carry the One Radio:

Provided by: University of California, San Francisco search and more info website

No comments:

Post a Comment