Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Saturday, June 17, 2023

Assessing the impact of a knowledge translation intervention on physical therapists’ self-efficacy and implementation of motor learning practice

The whole problem here is that you have NO objective damage diagnosis that would lead to EXACT REHAB PROTOCOLS!  Thus your therapists really don't have to think at all, the complete path is laid out for you to get stroke survivors 100% recovered. If 100% recovery is not your goal for survivors; GET OUT OF STROKE!

Assessing the impact of a knowledge translation intervention on physical therapists’ self-efficacy and implementation of motor learning practice

Abstract

Background

The application of motor learning (ML) principles and research in physical therapy can optimize patient outcomes. However, the translation of the accumulated knowledge in ML to clinical practice is limited. Knowledge translation interventions, which are designed to promote changes in clinical behaviors, have the potential to address this implementation gap. We developed, implemented, and evaluated a knowledge translation intervention for ML implementation that focuses on building clinical capacity among physical therapists for the systematic application of ML knowledge in clinical practice.

Methods

A total of 111 physical therapists underwent the intervention, which consisted of the following: (1) an interactive didactic 20-hour course; (2) an illustrated conceptual model of ML elements; and (3) a structured clinical-thinking form. Participants completed the Physical Therapists’ Perceptions of Motor Learning (PTP-ML) questionnaire pre and post intervention. The PTP-ML was used to assess ML-related self-efficacy and implementation. Participants also provided post-intervention feedback. A sub-sample (n = 25) provided follow-up feedback more than a year after the completion of the intervention. Pre–post and post-follow-up changes in the PTP-ML scores were calculated. The information gathered from the open-ended items of the post-intervention feedback was analyzed to identify emerging themes.

Results

Comparing pre- and post-intervention scores, significant changes were found in the total questionnaire scores, self-efficacy subscale scores, reported implementation subscale scores (P < .0001), and general perceptions and work environment subscale score (P < .005). The mean changes in the total questionnaire and self-efficacy scores also significantly exceeded the Reliable Change Index. In the follow-up sample, these changes were maintained. Participants felt that the intervention helped them organize their knowledge in a structured manner and consciously link their practice elements to concepts in ML. Discussion of clinical cases was reported to be the most valuable educational method, and the illustrated conceptual model of ML elements was the least valued. Respondents also suggested support activities to maintain and enhance the learning experience, including on-site mentorship and hands-on experience.

Conclusions

Findings support the positive effect of an educational tool, most prominently on physical therapists’ ML self-efficacy. The addition of practical modeling or ongoing educational support may enhance intervention effects.


No comments:

Post a Comment