Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Wednesday, November 29, 2023

Automated Large Vessel Occlusion Detection Software and Thrombectomy Treatment Times

 You do realize the only goal in stroke is 100% recovery? I guess not since you didn't measure that.

“What's measured, improves.” So said management legend and author Peter F. Drucker 

Automated Large Vessel Occlusion Detection Software and Thrombectomy Treatment Times

JAMA Neurol. 2023;80(11):1182-1190. doi:10.1001/jamaneurol.2023.3206
Key Points

Question  Does implementation of automated large vessel occlusion detection software for acute stroke triage decrease time to endovascular thrombectomy initiation?

Findings  In this cluster randomized trial including 243 patients treated with thrombectomy over a 1-year period, implementation of automated large vessel occlusion detection software led to a statistically significant reduction of 11 minutes in time to thrombectomy initiation.

Meaning  Artificial intelligence-enabled automated large vessel occlusion detection software for stroke triage can improve thrombectomy treatment times.

Abstract

Importance  The benefit of endovascular stroke therapy (EVT) in large vessel occlusion (LVO) ischemic stroke is highly time dependent. Process improvements to accelerate in-hospital workflows are critical.

Objective  To determine whether automated computed tomography (CT) angiogram interpretation coupled with secure group messaging can improve in-hospital EVT workflows.

Design, Setting, and Participants  This cluster randomized stepped-wedge clinical trial took place from January 1, 2021, through February 27, 2022, at 4 comprehensive stroke centers (CSCs) in the greater Houston, Texas, area. All 443 participants with LVO stroke who presented through the emergency department were treated with EVT at the 4 CSCs. Exclusion criteria included patients presenting as transfers from an outside hospital (n = 158), in-hospital stroke (n = 39), and patients treated with EVT through randomization in a large core clinical trial (n = 3).

Intervention  Artificial intelligence (AI)–enabled automated LVO detection from CT angiogram coupled with secure messaging was activated at the 4 CSCs in a random-stepped fashion. Once activated, clinicians and radiologists received real-time alerts to their mobile phones notifying them of possible LVO within minutes of CT imaging completion.

Main Outcomes and Measures  Primary outcome was the effect of AI-enabled LVO detection on door-to-groin (DTG) time and was measured using a mixed-effects linear regression model, which included a random effect for cluster (CSC) and a fixed effect for exposure status (pre-AI vs post-AI). Secondary outcomes included time from hospital arrival to intravenous tissue plasminogen activator (IV tPA) bolus in eligible patients, time from initiation of CT scan to start of EVT, and hospital length of stay. In exploratory analysis, the study team evaluated the impact of AI implementation on 90-day modified Rankin Scale disability outcomes.

Results  Among 243 patients who met inclusion criteria, 140 were treated during the unexposed period and 103 during the exposed period. Median age for the complete cohort was 70 (IQR, 58-79) years and 122 were female (50%). Median National Institutes of Health Stroke Scale score at presentation was 17 (IQR, 11-22) and the median DTG preexposure was 100 (IQR, 81-116) minutes. In mixed-effects linear regression, implementation of the AI algorithm was associated with a reduction in DTG time by 11.2 minutes (95% CI, −18.22 to −4.2). Time from CT scan initiation to EVT start fell by 9.8 minutes (95% CI, −16.9 to −2.6). There were no differences in IV tPA treatment times nor hospital length of stay. In multivariable logistic regression adjusted for age, National Institutes of Health Stroke scale score, and the Alberta Stroke Program Early CT Score, there was no difference in likelihood of functional independence (modified Rankin Scale score, 0-2; odds ratio, 1.3; 95% CI, 0.42-4.0).

Conclusions and Relevance  Automated LVO detection coupled with

No comments:

Post a Comment