Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Tuesday, November 28, 2023

Enhanced Motor Imagery Based Brain-Computer Interface via Vibration Stimulation and Robotic Glove for Post-Stroke Rehabilitation

And you somehow magically think this extensive intervention will actually make it into hospitals? NEVER OCCUR! Hospitals incompetently do not have a research analyst whose only job is to evaluate and implement stroke research. Incredibly bad research using healthy subjects. People need to be fired for that.

Enhanced Motor Imagery Based Brain-Computer Interface via Vibration Stimulation and Robotic Glove for Post-Stroke Rehabilitation

  • 11 Accesses

Part of the Communications in Computer and Information Science book series (CCIS,volume 1963)

Abstract

Motor imagery based brain-computer interface (MI-BCI) has been extensively researched as a potential intervention to enhance motor function for post-stroke patients. However, the difficulties in performing imagery tasks and the constrained spatial resolution of electroencephalography complicate the decoding of fine motor imagery (MI). To overcome the limitation, an enhanced MI-BCI rehabilitation system based on vibration stimulation and robotic glove is proposed in this paper. First, a virtual scene involving object-oriented palmar grasping and pinching actions, is designed to enhance subjects’ engagement in performing MI tasks by providing straightforward and specific goals. Then, vibration stimulation, which can offer proprioceptive feedback, is introduced to help subjects better switch their attention to the corresponding MI limbs. Finally, the self-designed pneumatic manipulator control module is developed for motion execution based on the MI classification results. Seven healthy individuals were recruited to validate the feasibility of the system in improving subjects’ MI abilities. The results show that the classification accuracy of three-class fine MI can be improved to 65.67%, which is significantly higher than the state-of-the art studies. This demonstrates the great potential of the proposed system in the application of post-stroke rehabilitation training.

No comments:

Post a Comment