Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Wednesday, November 29, 2023

Serum β-synuclein, neurofilament light chain and glial fibrillary acidic protein as prognostic biomarkers in moderate-to-severe acute ischemic stroke

Predicting something DOES ABSOLUTELY NOTHING to get survivors recovered! Will you try to solve stroke to 100% recovery, instead of this useless waste?

Serum β-synuclein, neurofilament light chain and glial fibrillary acidic protein as prognostic biomarkers in moderate-to-severe acute ischemic stroke

Abstract

We aimed to assess the prognostic value of serum β-synuclein (β-syn), neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) in patients with moderate-to-severe acute ischemic stroke. We measured β-syn, GFAP and NfL in serum samples collected one day after admission in 30 adult patients with moderate-to-severe ischemic stroke due to middle cerebral artery (MCA) occlusion. We tested the associations between biomarker levels and clinical and radiological scores (National Institute of Health Stroke Scale scores, NIHSS, and Alberta Stroke Program Early CT Score, ASPECTS), as well as measures of functional outcome (modified Rankin Scale, mRS). Serum biomarkers were significantly associated with ASPECTS values (β-syn p = 0.0011, GFAP p = 0.0002) but not with NIHSS scores at admission. Patients who received mechanical thrombectomy and intravenous thrombolysis showed lower β-syn (p = 0.029) und NfL concentrations (p = 0.0024) compared to patients who received only mechanical thrombectomy. According to median biomarker levels, patients with high β-syn, NfL or GFAP levels showed, after therapy, lower clinical improvement (i.e., lower 24-h NIHSS change), higher NIHSS scores during hospitalization and higher mRS scores at 3-month follow-up. Elevated serum concentrations of β-syn (p = 0.016), NfL (p = 0.020) or GFAP (p = 0.010) were significantly associated with 3-month mRS of 3–6 vs. 0–2 even after accounting for age, sex and renal function. In patients with moderate-to-severe acute ischemic stroke, serum β-syn, NfL and GFAP levels associated with clinical and radiological scores at different timepoints and were able to predict short- and middle-term clinical outcomes.

No comments:

Post a Comment