Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Saturday, January 17, 2026

Theobromine From Cocoa Linked to Slower Biological Aging

 Now I can add dark chocolate to my espresso and get full benefits from both.

Will your doctor guarantee this combo will recover your 5 lost years of brain cognition due to your stroke?

Theobromine From Cocoa Linked to Slower Biological Aging

 BUFFALO, NY — December 16, 2025 — A new research paper was published in Aging-US on December 10, 2025, titled “Theobromine is associated with slower epigenetic ageing.

In this study, led by Ramy Saad from King’s College London and Great Ormond Street Hospital for Children NHS Foundation Trust, alongside Jordana T. Bell from King’s College London, researchers found that higher levels of theobromine, a natural compound found in cocoa, are associated with slower biological aging in humans. The findings suggest that theobromine may support healthy aging.

Epigenetic aging refers to biological changes that affect how genes function over time. It is measured using blood-based markers such as DNA methylation and telomere length, which together provide a more accurate picture of aging than chronological age.

In this work, researchers analyzed data from two large European studies. In 509 women from the TwinsUK cohort, they found that higher blood levels of theobromine were associated with slower aging, especially based on GrimAge, an epigenetic clock that predicts the risk of age-related disease and early death. The results were confirmed in 1,160 men and women from the German KORA study.

“We initially tested for the association between six metabolites found in coffee and cocoa, and epigenetic measures of ageing in blood samples from 509 healthy females from the TwinsUK cohort (median age = 59.8, IQR = 12.81, BMI = 25.35).“

Importantly, theobromine’s effects were independent of related compounds such as caffeine. Even after adjusting for these other substances and different lifestyle factors, the association with slower aging remained strong. The study also associated higher theobromine levels with longer telomeres, another marker of healthy aging.

While theobromine is commonly found in cocoa and chocolate, the study does not suggest increasing chocolate intake. However, it highlights the potential of everyday dietary components such as theobromine to influence aging. These findings support growing evidence that certain plant-based compounds may play a role in promoting long-term health. By identifying a connection between theobromine and slower biological aging, the study opens new directions for research into nutritional strategies for healthy aging.

Paper DOI: https://doi.org/10.18632/aging.206344

Corresponding authors: Ramy Saad - ramy.saad@kcl.ac.uk; Jordana T. Bell - jordana.bell@kcl.ac.uk

No comments:

Post a Comment