Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Saturday, February 18, 2012

SKI-1 and Furin Generate Multiple RGMa Fragments that Regulate Axonal Growth

I like the term repulsive guidance molecule. Ask your researcher to explain what the next steps are for using this in stroke therapy.
http://www.cell.com/developmental-cell/retrieve/pii/S1534580711005326
  • Highlights
  • SKI-1 and Furin activate RGMa
  • Membrane-bound and soluble RGMa control axonal growth
  • Independent RGMa domains regulate axons through the same Neogenin domain

Summary

The nervous system is enormously complex, yet the number of cues that control axonal growth is surprisingly meager. Posttranslational modifications amplify diversity, but the degree to which they are employed is unclear. Here, we show that Furin and SKI-1 combine with autocatalytic cleavage and a disulfide bridge to generate four membrane-bound and three soluble forms of the repulsive guidance molecule (RGMa). We provide in vivo evidence that these proprotein convertases are involved in axonal growth and that RGMa cleavage is essential for Neogenin-mediated outgrowth inhibition. Surprisingly, despite no sequence homology, N- and C-RGMa fragments bound the same Fibronectin-like domains in Neogenin and blocked outgrowth. This represents an example in which unrelated fragments from one molecule inhibit outgrowth through a single receptor domain. RGMa is a tethered membrane-bound molecule, and proteolytic processing amplifies RGMa diversity by creating soluble versions with long-range effects as well.

No comments:

Post a Comment