Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Tuesday, November 3, 2020

Association of moderate alcohol intake with in vivo amyloid-beta deposition in human brain: A cross-sectional study

 Notice the word 'moderate'.

If you don't like my cherry picking of positive research on alcohol you can quote these, your doctor will:

Safest level of alcohol consumption is none, worldwide study shows

Alcohol consumption increases risk for PAD, stroke

 

The latest here:

Association of moderate alcohol intake with in vivo amyloid-beta deposition in human brain: A cross-sectional study

Affiliations
Free PMC article

Abstract

Background: An emerging body of literature has indicated that moderate alcohol intake may be protective against Alzheimer disease (AD) dementia. However, little information is available regarding whether moderate alcohol intake is related to reductions in amyloid-beta (Aβ) deposition, or is protective via amyloid-independent mechanisms in the living human brain. Here we examined the associations of moderate alcohol intake with in vivo AD pathologies, including cerebral Aβ deposition, neurodegeneration of AD-signature regions, and cerebral white matter hyperintensities (WMHs) in the living human brain.

Methods and findings: The present study was part of the Korean Brain Aging Study for Early Diagnosis and Prediction of Alzheimer's Disease (KBASE), an ongoing prospective cohort study that started in 2014. As of November 2016, 414 community-dwelling individuals with neither dementia nor alcohol-related disorders (280 cognitively normal [CN] individuals and 134 individuals with mild cognitive impairment [MCI]) between 56 and 90 years of age (mean age 70.9 years ± standard deviation 7.8; male, n [%] = 180 [43.5]) were recruited from 4 sites (i.e., 2 university hospitals and 2 public centers for dementia prevention and management) around Seoul, South Korea. All the participants underwent comprehensive clinical assessments comprising lifetime and current histories of alcohol intake and multimodal brain imaging, including [11C] Pittsburgh compound B positron emission tomography (PET), [18F] fluorodeoxyglucose (FDG) PET, and magnetic resonance imaging (MRI) scans. Lifetime and current alcohol intake were categorized as follows: no drinking, <1 standard drink (SD)/week, 1-13 SDs/week, and 14+ SDs/week. A moderate lifetime alcohol intake (1-13 SDs/week) was significantly associated with a lower Aβ positivity rate compared to the no drinking group, even after controlling for potential confounders (odds ratio 0.341, 95% confidence interval 0.163-0.714, p = 0.004). In contrast, current alcohol intake was not associated with amyloid deposition. Additionally, alcohol intake was not related to neurodegeneration of AD-signature regions or cerebral WMH volume. The present study had some limitations in that it had a cross-sectional design and depended on retrospective recall for alcohol drinking history.

Conclusions: In this study, we observed in middle- and old-aged individuals with neither dementia nor alcohol-related disorders that moderate lifetime alcohol intake was associated with lower cerebral Aβ deposition compared to a lifetime history of not drinking. Moderate lifetime alcohol intake may have a beneficial influence on AD by reducing pathological amyloid deposition rather than amyloid-independent neurodegeneration or cerebrovascular injury.

 

No comments:

Post a Comment