Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Thursday, October 17, 2024

Repetitive peripheral magnetic stimulation alone or in combination with repetitive transcranial magnetic stimulation in poststroke rehabilitation: a systematic review and meta-analysis

 Instead of doing lazy crapola review research like this, WHY THE FUCK AREN'T YOU PROVIDING RESEARCH THAT GETS SURVIVORS RECOVERED? Are your mentors and senior researchers that fucking incompetent? 

Send me hate mail on this: oc1dean@gmail.com. I'll print your complete statement with your name and my response in my blog. Or are you afraid to engage with my stroke-addled mind? I would like to know why you aren't creating research that gets survivors recovered!

You'll want 100% recovery when you become the 1 in 4 per WHO that has a stroke!). I'd suggest you start working on that now!

Repetitive peripheral magnetic stimulation alone or in combination with repetitive transcranial magnetic stimulation in poststroke rehabilitation: a systematic review and meta-analysis

Abstract

Objective

This study aimed to comprehensively review the effects of repetitive peripheral magnetic stimulation (rPMS) alone or in combination with repetitive transcranial magnetic stimulation (rTMS) on improving upper limb motor functions and activities of daily living (ADL) in patients with stroke, and to explore possible efficacy-related modulators.

Methods

A literature search from 1st January 2004 to 1st June 2024 was performed to identified studies that investigated the effects of rPMS on upper limb motor functions and ADL in poststroke patients.

Results

Seventeen studies were included. Compared with the control, both rPMS alone or rPMS in combination with rTMS significantly improved upper limb motor function (rPMS: Hedge’s g = 0.703, p = 0.015; rPMS + rTMS: Hedge’s g = 0.892, p < 0.001) and ADL (rPMS: Hedge’s g = 0.923, p = 0.013; rPMS + rTMS: Hedge’s g = 0.923, p < 0.001). However, rPMS combined with rTMS was not superior to rTMS alone on improving poststroke upper limb motor function and ADL (Hedge’s g = 0.273, p = 0.123). Meta-regression revealed that the total pulses (p = 0.003) and the number of pulses per session of rPMS (p < 0.001) correlated with the effect sizes of ADL.

Conclusions

Using rPMS alone or in combination with rTMS appears to effectively improve upper extremity functional recovery and activity independence in patients after stroke. However, a simple combination of these two interventions may not produce additive benefits than the use of rTMS alone. Optimization of rPMS protocols, such as applying appropriate dosage, may lead to a more favourable recovery outcome in poststroke rehabilitation.

Introduction

Repetitive peripheral magnetic stimulation (rPMS) is a non-invasive therapeutic approach for facilitating motor recovery following neurological diseases, which was first proposed for the purpose of neurological rehabilitation in 1996 [1]. The rPMS technique employs focused magnetic pulses over various peripheral targets (e.g., muscles, nerves, or spinal roots) [2], and this technique induces repetitive contraction-relaxation cycles by depolarizing neurons [3] and then provides proprioceptive inputs to afferent fibers [4,5,6,7], therefore modulating sensorimotor plasticity. In the literature, rPMS is considered a unique, promising neuromodulation technique due to its advantage of providing more deeply penetrating, focused, painless stimulation than conventional electrical stimulation provides [5, 8, 9].

In 2023, rPMS was delivered using a transcranial magnetic stimulator, which was originally used for repetitive transcranial magnetic stimulation (rTMS), and has been approved by the US Food and Drug Administration for relieving chronic pain [10]. In poststroke rehabilitation, rPMS is different from rTMS in the neural mechanism - rTMS has been extensively used to facilitate motor recovery by modulating cortical plasticity in a top-down approach [11] whereas rPMS is adopting a bottom-up approach through recruitment of proprioceptive afferents thus up-regulate the excitability of the sensorimotor areas via the ascending pathway [2, 6]. Therefore, combining central and peripheral magnetic stimulation may produce a synergistic effect on the facilitation of motor recovery after stroke [12].

The effects of rPMS for motor function of the hemiplegic upper extremity or ADL after stroke have been reviewed in previous systematic reviews, which generally have reported positive effects of rPMS [2, 8, 13,14,15,16,17,18]. However, these reviews are not free from methodological limitations. Firstly, a few reviews did not perform meta-analysis to quantitively evaluate the treatment effects [2, 14, 18]. Secondly, in the previous meta-analytic reviews, no detailed subgroup analysis or meta-regression was performed to identify the influence of different stimulation protocols, patient demographics, or patients’ clinical profiles on the treatment effect sizes [8, 13, 15, 16]. Thirdly, some reviews covered a wide range of neurological disease conditions, so the specific effect of rPMS in stroke rehabilitation was still not conclusive [2, 17]. Lastly, these reviews did not systematically investigate the effect of rPMS alone or in combination with rTMS to elaborate the possible synergistic effect of the combined interventions [2, 8, 13,14,15,16,17,18].

Therefore, a comprehensive understanding of clinical effectiveness as well as neural mechanisms underlying the therapeutic benefits of using rPMS alone or in combination with rTMS in poststroke rehabilitation is needed. Here, our review aimed to: (1) investigate the effects of these two interventional methods (using rPMS alone or in combination with rTMS) on upper limb motor function and ADL in poststroke patients, using meta-analysis; (2) identify any significant relationship between various rPMS parameters, patient demographics, clinical characteristics, and effect sizes using subgroup analyses and meta-regression; and (3) clarify the mechanisms underlying the therapeutic effects of rPMS by qualitatively assessing rPMS studies using neuroimaging and/or neurophysiological outcomes.

No comments:

Post a Comment