Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Thursday, October 23, 2025

Oxytocin Enhances Neurogenesis and Synaptic Plasticity to Attenuate Age-Related Cognitive Decline in Aged Mice

 Your competent doctor is well aware of what oxytocin can do, right? Oh no, you DON'T have a functioning stroke doctor, do you? And your doctor and hospital are so fucking incompetent, they can't figure out how to get human testing going!


  • oxytocin (5 posts to September 2013)
  • Do you prefer your doctor, hospital and board of director's incompetence NOT KNOWING? OR NOT DOING?

    Oxytocin Enhances Neurogenesis and Synaptic Plasticity to Attenuate Age-Related Cognitive Decline in Aged Mice


    https://doi.org/10.1016/j.ibneur.2025.10.008Get rights and content
    Under a Creative Commons license
    Open access

    Abstract

    Brain aging is characterized by progressive structural and functional deterioration, leading to cognitive decline and impaired social functioning. A key factor in this process is the age-related decline in adult neurogenesis, particularly in the hippocampal dentate gyrus, which is linked to deficits in learning, memory, and increased social anxiety. Oxytocin, a neuropeptide synthesized in the hypothalamus, regulates social behavior, cognition, and emotion by acting on brain regions including the hippocampus. Importantly, oxytocin levels decrease with age, potentially contributing to cognitive impairment. Here we examined whether chronic intraperitoneal oxytocin administration could attenuate cognitive decline in aged mice. Twelve-month-old mice received oxytocin injections (0.5 mg/kg) five times weekly for 13 weeks. Behavioral testing at 12 weeks of treatment using the object-place recognition task showed enhanced spatial learning and recognition memory in oxytocin-treated mice compared to saline controls. Immunohistochemistry revealed significantly increased doublecortin (DCX)-positive cells in the hippocampus, indicating enhanced neurogenesis. Furthermore, oxytocin treatment upregulated the expression of glutamate receptor 1 (GluR1) and N-methyl-D-aspartate receptor subunit 2B (NMDAR2B), which are markers of synaptic plasticity. These findings suggest that chronic oxytocin treatment is associated with enhanced neurogenesis and synaptic plasticity, which may contribute to improved cognition in aged mice. Our results support oxytocin as a potential therapeutic agent for age-related cognitive decline.

    No comments:

    Post a Comment