Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Monday, December 27, 2021

Cardiac Risk Factors for Stroke: A Comprehensive Mendelian Randomization Study

 I'm sure there is something in here useful but I don't know what it is.

Cardiac Risk Factors for Stroke: A Comprehensive Mendelian Randomization Study

Originally publishedhttps://doi.org/10.1161/STROKEAHA.121.036306Stroke. 2021;0:STROKEAHA.121.036306

Background and Purpose:

Observational studies suggest an association of stroke with cardiac traits beyond atrial fibrillation, the leading source of cardioembolism. However, controversy remains regarding a causal role of these traits in stroke pathogenesis. Here, we leveraged genetic data to systematically assess associations between cardiac traits and stroke risk using a Mendelian Randomization framework.

Methods:

We studied 66 cardiac traits including cardiovascular diseases, magnetic resonance imaging–derived cardiac imaging, echocardiographic imaging, and electrocardiographic measures, as well as blood biomarkers in a 2-sample Mendelian Randomization approach. Genetic predisposition to each trait was explored for associations with risk of stroke and stroke subtypes in data from the MEGASTROKE consortium (40 585 cases/406 111 controls). Using multivariable Mendelian Randomization, we adjusted for potential pleiotropic or mediating effects relating to atrial fibrillation, coronary artery disease, and systolic blood pressure.

Results:

As expected, we observed strong independent associations between genetic predisposition to atrial fibrillation and cardioembolic stroke and between genetic predisposition to coronary artery disease as a proxy for atherosclerosis and large-artery stroke. Our data-driven analyses further indicated associations of genetic predisposition to both heart failure and lower resting heart rate with stroke. However, these associations were explained by atrial fibrillation, coronary artery disease, and systolic blood pressure in multivariable analyses. Genetically predicted P-wave terminal force in V1, an electrocardiographic marker for atrial cardiopathy, was inversely associated with large-artery stroke.

Conclusions:

Available genetic data do not support substantial effects of cardiac traits on the risk of stroke beyond known clinical risk factors. Our findings highlight the need to carefully control for confounding and other potential biases in studies examining candidate cardiac risk factors for stroke.

 

No comments:

Post a Comment