Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Thursday, October 19, 2023

Motor-cognitive functions required for driving in post-stroke individuals identified via machine-learning analysis

Useless, nothing here on the rehab needed to get safely driving again. DO YOU BLITHERING IDIOTS EVER THINK AT ALL?

Motor-cognitive functions required for driving in post-stroke individuals identified via machine-learning analysis

Abstract

Background

People who were previously hospitalised with stroke may have difficulty operating a motor vehicle, and their driving aptitude needs to be evaluated to prevent traffic accidents in today’s car-based society. Although the association between motor-cognitive functions and driving aptitude has been extensively studied, motor-cognitive functions required for driving have not been elucidated.

Methods

In this paper, we propose a machine-learning algorithm that introduces sparse regularization to automatically select driving aptitude-related indices from 65 input indices obtained from 10 tests of motor-cognitive function conducted on 55 participants with stroke. Indices related to driving aptitude and their required tests can be identified based on the output probability of the presence or absence of driving aptitude to provide evidence for identifying subjects who must undergo the on-road driving test. We also analyzed the importance of the indices of motor-cognitive function tests in evaluating driving aptitude to further clarify the relationship between motor-cognitive function and driving aptitude.

Results

The experimental results showed that the proposed method achieved predictive evaluation of the presence or absence of driving aptitude with high accuracy (area under curve 0.946) and identified a group of indices of motor-cognitive function tests that are strongly related to driving aptitude.

Conclusions

The proposed method is able to effectively and accurately unravel driving-related motor-cognitive functions from a panoply of test results, allowing for autonomous evaluation of driving aptitude in post-stroke individuals. This has the potential to reduce the number of screening tests required and the corresponding clinical workload, further improving personal and public safety and the quality of life of individuals with stroke. k  mi mkji  mk

No comments:

Post a Comment