Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Wednesday, April 27, 2022

Resveratrol Neuroprotection in Stroke and Traumatic CNS injury

 This does NOT mean you should be bringing in bottles of red wine for recent stroke patients. It means we need immediate followup research that creates a protocol on administering resveratrol. But since there is NO stroke leadership or strategy, NOTHING WILL OCCUR!

Resveratrol Neuroprotection in Stroke and Traumatic CNS injury

Abstract

Resveratrol, a stilbene formed in many plants in response to various stressors, elicits multiple beneficial effects in vertebrates. Particularly, resveratrol was shown to have therapeutic properties in cancer, atherosclerosis and neurodegeneration. Resveratrol-induced benefits are modulated by multiple synergistic pathways that control oxidative stress, inflammation and cell death. Despite the lack of a definitive mechanism, both in vivo and in vitro studies suggest that resveratrol can induce a neuroprotective state when administered acutely or prior to experimental injury to the CNS. In this review, we discuss the neuroprotective potential of resveratrol in stroke, traumatic brain injury and spinal cord injury, with a focus on the molecular pathways responsible for this protection.

Keywords: Polyphenols, Neuroprotection, Ischemia, CNS injury, Oxidative stress, Inflammation

1. Introduction

Resveratrol is a naturally occurring stilbene-class of polyphenol produced in the skins of many edible plants as a response to fungal infection (; ). Resveratrol is widely known for its anti-oxidant properties, and has been implicated in the putative anti-atherosclerotic effects of red wine. The neuroprotective benefits of resveratrol were known since it was shown to ameliorate kainate-induced excitotoxicity (). Subsequently, resveratrol has been shown to improve histopathological and behavioral outcomes after various types of acute CNS injuries including stroke (; ; ), traumatic brain injury (TBI) (; ), subarachnoid hemorrhage (SAH) () and spinal cord injury (SCI) (; ).

The exact mechanism of resveratrol-induced neuroprotection is not clear (; ; ), but many of its beneficial effects were thought to be promoted by activation of silent mating type information regulation 2 homolog 1 (SIRT1) (), AMP-activated kinase (AMPK) () and nuclear factor (erythroid derived 2)-like 2 (Nrf2) (; ). SIRT1 is a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase that acts on histone and non-histone targets to improve lifespan and promote a pro-survival environment in the CNS (; ). AMPK senses increases in endogenous adenosine levels, specifically AMP or ADP, and compensates by enhancing ATP production. AMPK has been shown to activate acetyl-coA carboxylase and SIRT1, while suppressing the mammalian target of rapamycin complex (mTORC), resulting in an overall improvement in metabolism and increased lifespan (; ). Nrf2 is a transcription factor that is responsible for binding antioxidant response elements (ARE) in the promoters of genes like superoxide dismutase (SOD), heme oxygenase 1 (HO-1), catalase and many other phase II defense enzymes, inducing their expression (; ; ).

The secondary brain damage and neuronal death after an acute CNS insult like stroke are synergistically mediated by many pathophysiologic mechanisms that include oxidative stress, inflammation, ionic imbalance and apoptosis. Treatment with resveratrol is shown to prevent or slow-down many of these pathological changes and its neuroprotective actions seem to be mediated by many putative effectors and targets (Fig. 1). The goal of this review is to discuss the major mechanisms that are thought to mediate resveratrol-induced neuroprotection.

An external file that holds a picture, illustration, etc.
Object name is nihms719784f1.jpg

Resveratrol induces a neuroprotective state via several disparate pathways. The exact mechanism of resveratrol-mediated neuroprotection is not yet understood, but the downstream anti-oxidative, anti-inflammatory and anti-apoptotic effectors have been well documented. This diagram illustrates the factors responsible for inducing a pro-survival state after resveratrol treatment in the CNS. Note that some effectors, particularly SIRT1 and AMPK can be activated or inhibited by more than one pathway. Arrows with a point indicate activation, while arrows with a flat tip indicate inhibition. White arrows indicate activation/inhibition via an indirect or poorly understood mechanism. Green = role in inflammation. Pink = role in oxidative stress. Blue = role in apoptosis. White = transcription factor or pathway intermediary.

 

No comments:

Post a Comment