Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Saturday, April 16, 2022

Characterizing Fast and Slow Progressors in Anterior Circulation Large Vessel Occlusion Strokes

 You don't even know which of the 5 causes of the neuronal cascade of death in the first days is causing the infarct growth. So you know nothing about how to address the problem. FUCKING USELESS RESEARCH.

Characterizing Fast and Slow Progressors in Anterior Circulation Large Vessel Occlusion Strokes

First Published April 5, 2022 Research Article 

Infarct growth rate (IGR) in acute ischemic stroke is highly variable. We sought to evaluate impact of symptom-reperfusion time on outcomes in patients undergoing mechanical thrombectomy (MT).

A prospectively maintained database from January,2012-August,2020 was reviewed. All patients with isolated MCA-M1 occlusion who achieved complete reperfusion(mTICI2C-3), had a witnessed symptom onset and follow-up MRI were included. IGR was calculated as final infarct volume (FIV)(ml)/symptom onset to reperfusion time(hours) and was dichotomized according to the median value into slow-(SP) versus fast-progressors (FP). The primary analysis aimed to evaluate the impact of symptom-reperfusion time on 90-day mRS in SP and FP. Secondary analysis was performed to identify predictors of IGR.

A total of 137 patients were eligible for analysis. Mean age was 63 ± 15.4 years and median IGR was 5.13ml/hour. SP(n = 69) had higher median ASPECTS, lower median rCBF<30% lesion volume, higher proportion of favorable collaterals and hypoperfusion intensity ratio (HIR)<0.4, higher minimal mean arterial blood pressure before reperfusion, and lower rates of general anesthesia compared to FP(n = 68). Symptom-reperfusion time was comparable between both groups. SP had higher rates of 90-day mRS0-2(71.9%vs.38.9%,aOR;7.226,95%CI[2.431–21.482],p < 0.001) and lower median FIV. Symptom-reperfusion time was associated with 90-day mRS0-2 in FP (aOR;0.541,95%CI[0.309–0.946],p = 0.03) but not in SP (aOR;0.874,95%CI[0.742–1.056],p = 0.16). On multivariable analysis, high ASPECTS and favorable collaterals in the NCCT/CTA model, and low rCBF<30% and HIR<0.4 in the CTP model were independent predictors of SP.

The impact of symptom-reperfusion time on outcomes significantly varies across slow-versus fast-progressors. ASPECTS, collateral score, rCBF<30%, and HIR define stroke progression profile.

 

No comments:

Post a Comment