Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Sunday, July 7, 2019

Egocentric video: a new tool for capturing hand use of individuals with spinal cord injury at home

Our therapists should be able to use this to objectively recognize the hand deficits you have and create protocols that will correct those deficits. That will never occur. 

Egocentric video: a new tool for capturing hand use of individuals with spinal cord injury at home

Journal of NeuroEngineering and Rehabilitation201916:83
  • Received: 25 January 2019
  • Accepted: 25 June 2019
  • Published:

Abstract

Background

Current upper extremity outcome measures for persons with cervical spinal cord injury (cSCI) lack the ability to directly collect quantitative information in home and community environments. A wearable first-person (egocentric) camera system is presented that aims to monitor functional hand use outside of clinical settings.

Methods

The system is based on computer vision algorithms that detect the hand, segment the hand outline, distinguish the user’s left or right hand, and detect functional interactions of the hand with objects during activities of daily living. The algorithm was evaluated using egocentric video recordings from 9 participants with cSCI, obtained in a home simulation laboratory. The system produces a binary hand-object interaction decision for each video frame, based on features reflecting motion cues of the hand, hand shape and colour characteristics of the scene.

Results

The output from the algorithm was compared with a manual labelling of the video, yielding F1-scores of 0.74 ± 0.15 for the left hand and 0.73 ± 0.15 for the right hand. From the resulting frame-by-frame binary data, functional hand use measures were extracted: the amount of total interaction as a percentage of testing time, the average duration of interactions in seconds, and the number of interactions per hour. Moderate and significant correlations were found when comparing these output measures to the results of the manual labelling, with ρ = 0.40, 0.54 and 0.55 respectively.

Conclusions

These results demonstrate the potential of a wearable egocentric camera for capturing quantitative measures of hand use at home.

No comments:

Post a Comment