Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Monday, August 31, 2020

The Efficiency, Efficacy, and Retention of Task Practice in Chronic Stroke

Useless, All this blathering with NO PROTOCOL CREATED.

The Efficiency, Efficacy, and Retention of Task Practice in Chronic Stroke 

First Published August 24, 2020 Research Article 

In motor skill learning, larger doses of practice lead to greater efficacy of practice, lower efficiency of practice, and better long-term retention. Whether such learning principles apply to motor practice after stroke is unclear. Here, we developed novel mixed-effects models of the change in the perceived quality of arm movements during and following task practice. The models were fitted to data from a recent randomized controlled trial of the effect of dose of task practice in chronic stroke. Analysis of the models’ learning and retention rates demonstrated an increase in efficacy of practice with greater doses, a decrease in efficiency of practice with both additional dosages and additional bouts of training, and fast initial decay following practice. Two additional effects modulated retention: a positive “self-practice” effect, and a negative effect of dose. Our results further suggest that for patients with sufficient arm use post-practice, self-practice will further improve(NOT GOOD ENOUGH, 100% RECOVERY IS THE GOAL.) use.

Access Options
 

No comments:

Post a Comment