Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Monday, February 8, 2016

Graphene Shows Promise For Brain Implants

I can forsee all kinds of uses for stroke survivors but don't worry nothing will come of this because not one single stroke leader has any innovative brain cells at all. No BHAGs coming any time soon.

Graphene Shows Promise For Brain Implants

Graphene, the super thin carbon material that’s been exciting scientists in the decade+ since single-atom thick graphene crystallites were successfully extracted from the bulk material, continues to give hints of a promising future blending electronics and biology.
In a new study, conducted by researchers at the Cambridge Graphene Centre and the University of Trieste in Italy, and published in the journal ACS Nano, the suggestion is it could be used to make highly effective, flexible brain implants in future — biodevices that avoid the loss of signal problem associated with the scar tissue that can form around modern electrodes made from more rigid substances, such as silicon and tungsten.
Point is, human brains are made of soft tissue so it helps if your electrodes can flex too. Graphene is also considered to have excellent biocompatibility properties (although research into potential toxicity is not conclusive at this stage).
The implication of the Cambridge-Trieste research is that graphene-based electrodes could, in future, be safely be implanted in the brain — offering promise for the restoration of sensory functions for amputee or paralysed patients, for example, or to help individuals with motor disorders such as epilepsy or Parkinson’s disease. So the future potential being glimpsed here is pretty exciting — albeit, theoretical and a long way out (plus, it should be stressed, the successful experiments were also conducted on rat brain cultures).
The researchers note that previously other groups have shown it is possible to use treated graphene to interact with neurons in the brain, however the problem with using treated graphene was the signal to noise ratio was very low. Working with untreated graphene retains the material’s much lauded electrical conductivity — resulting in a significantly better electrode. And one that was seen to interface well with rat neurons.
“For the first time we interfaced graphene to neurons directly,” said Professor Laura Ballerini of the University of Trieste in Italy, in a statement. “We then tested the ability of neurons to generate electrical signals known to represent brain activities, and found that the neurons retained their neuronal signalling properties unaltered. This is the first functional study of neuronal synaptic activity using uncoated graphene based materials.”
The scientists couch the research as a “first step” towards using pristine graphene-based materials as an electrode for a neuro-interface. So again, graphene-based biodevices aren’t going to be coming to CES next year — perhaps in a couple of decades…
They say their next steps will be to investigate how different forms of graphene are able to affect neurons, and whether tuning the material properties might alter the biological response (in terms of synapses and neuronal excitability).
“Hopefully this will pave the way for better deep brain implants to both harness and control the brain, with higher sensitivity and fewer unwanted side effects,” added Ballerini.


No comments:

Post a Comment