Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Saturday, August 8, 2020

Prevalence of high-risk plaques and risk of stroke in patients with asymptomatic carotid stenosis: A meta-analysis

 Tells us nothing useful. If you are asymptomatic how would you even have a clue to get tested?  I was totally asymptomatic, yet I must have had high risk plaques since I broke one loose during a whitewater canoeing trip(common for me).  

Would this work? And how many hospitals/clinics have access to these?

Lasers used to detect risk of heart attack and stroke

New developments in the detection of vulnerable plaque 2001

 

The latest here:

Prevalence of high-risk plaques and risk of stroke in patients with asymptomatic carotid stenosis: A meta-analysis

A Meta-analysis

JAMA Neurol. Published online August 3, 2020. doi:10.1001/jamaneurol.2020.2658
Key Points

Question  Is it relevant and feasible to use multimodal neurovascular imaging to perform a risk-oriented selection for revascularization in patients with asymptomatic carotid stenosis?

Findings  In this meta-analysis of 64 studies that enrolled 20 751 participants, high-risk plaques were common in patients with asymptomatic carotid stenosis, and the associated annual incidence of ipsilateral ischemic events (4 events per 100 person-years) was higher than the currently accepted estimates.

Meaning  This study’s findings indicate that extending the assessment of asymptomatic carotid stenosis beyond the grade of stenosis is needed in routine practice to improve risk stratification and optimize therapy; clinical trials using multimodal neurovascular imaging for risk stratification before randomization are warranted to evaluate optimal strategies for stroke prevention in patients with asymptomatic carotid stenosis.

Abstract

Importance  There is an ongoing debate regarding the management of asymptomatic carotid stenosis. Previous studies have reported imaging features of high-risk plaques that could help to optimize the risk-benefit ratio of revascularization. However, such studies have not provided an accurate estimate of the prevalence of high-risk plaques and the associated annual incidence of ipsilateral ischemic cerebrovascular events to inform the design of clinical trials using a risk-oriented selection of patients before randomization.

Objective  To assess the relevance and feasibility of risk-oriented selection of patients for revascularization.

Data Sources  A systematic search of PubMed and Ovid Embase from database inception to July 31, 2019, was performed.

Study Selection  Prospective observational studies that reported prevalence of high-risk plaques and incidence of ipsilateral ischemic cerebrovascular events were included.

Data Extraction and Synthesis  Aggregated data were pooled using random-effects meta-analysis. Data were analyzed from December 16, 2019, to January 15, 2020.

Main Outcomes and Measures  Prevalence of high-risk plaques and annual incidence of ipsilateral ischemic events.

Results  Overall, 64 studies enrolling 20 751 participants aged 29 to 95 years (mean age range, 55.0-76.5 years; proportion of men, 45%-87%) were included in the meta-analysis. Among all participants, the pooled prevalence of high-risk plaques was 26.5% (95% CI, 22.9%-30.3%). The most prevalent high-risk plaque features were neovascularization (43.4%; 95% CI, 31.4%-55.8%) in 785 participants, echolucency (42.3%; 95% CI, 32.2%-52.8%) in 12 364 participants, and lipid-rich necrotic core (36.3%; 95% CI, 27.7%-45.2%) in 3728 participants. The overall incidence of ipsilateral ischemic cerebrovascular events was 3.2 events per 100 person-years (22 cohorts with 10 381 participants; mean follow-up period, 2.8 years; range, 0.7-6.5 years). The incidence of ipsilateral ischemic cerebrovascular events was higher in patients with high-risk plaques (4.3 events per 100 person-years; 95% CI, 2.5-6.5 events per 100 person-years) than in those without high-risk plaques (1.2 events per 100 person-years; 95% CI, 0.6-1.8 events per 100 person-years), with an odds ratio of 3.0 (95% CI, 2.1-4.3; I2 = 48.8%). In studies focusing on severe stenosis (9 cohorts with 2128 participants; mean follow-up period, 2.8 years; range, 1.4-6.5 years), the incidence of ipsilateral ischemic cerebrovascular events was 3.7 events per 100 person-years (95% CI, 1.9-6.0 events per 100 person-years). The incidence of ipsilateral ischemic cerebrovascular events was also higher in patients with high-risk plaques (7.3 events per 100 person-years; 95% CI, 2.0-15.0 events per 100 person-years) than in those without high-risk plaques (1.7 events per 100 person-years; 95% CI, 0.6-3.3 events per 100 person-years), with an odds ratio of 3.2 (95% CI, 1.7-5.9; I2 = 39.6%).

Conclusions and Relevance  High-risk plaques are common in patients with asymptomatic carotid stenosis, and the associated risk of an ipsilateral ischemic cerebrovascular event is higher than the currently accepted estimates. Extension of routine assessment of asymptomatic carotid stenosis beyond the grade of stenosis may help improve risk stratification and optimize therapy.

No comments:

Post a Comment