Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Wednesday, September 21, 2022

Cross-validation of predictive models for functional recovery after post-stroke rehabilitation

These models are totally fucking useless right now, all they do is predict failure to recover.

Cross-validation of predictive models for functional recovery after post-stroke rehabilitation

Abstract

Background

Rehabilitation treatments and services are essential for the recovery of post-stroke patients’ functions; however, the increasing number of available therapies and the lack of consensus among outcome measures compromises the possibility to determine an appropriate level of evidence. Machine learning techniques for prognostic applications offer accurate and interpretable predictions, supporting the clinical decision for personalised treatment. The aim of this study is to develop and cross-validate predictive models for the functional prognosis of patients, highlighting the contributions of each predictor.

Methods

A dataset of 278 post-stroke patients was used for the prediction of the class transition, obtained from the modified Barthel Index. Four classification algorithms were cross-validated and compared. On the best performing model on the validation set, an analysis of predictors contribution was conducted.

Results

The Random Forest obtained the best overall results on the accuracy (76.2%), balanced accuracy (74.3%), sensitivity (0.80), and specificity (0.68). The combination of all the classification results on the test set, by weighted voting, reached 80.2% accuracy. The predictors analysis applied on the Support Vector Machine, showed that a good trunk control and communication level, and the absence of bedsores retain the major contribution in the prediction of a good functional outcome.

Conclusions

Despite a more comprehensive assessment of the patients is needed, this work paves the way for the implementation of solutions for clinical decision support in the rehabilitation of post-stroke patients. Indeed, offering good prognostic accuracies for class transition and patient-wise view of the predictors contributions, it might help in a personalised optimisation of the patients’ rehabilitation path.

Introduction

The World Health Organization defined stroke as: “rapidly developing clinical signs of focal (or global) disturbance of cerebral function, with symptoms lasting 24 h or longer or leading to death, with no apparent cause other than of vascular origin” [1]. In fact, stroke is the second leading cause of death worldwide [2] and despite the advances in healthcare contributing to the reduction of the mortality rate, millions of people have to deal with physical and/or psychological burdens affecting their quality of life [3, 4].

Rehabilitation treatments and services are the key elements for the recovery of patients’ functions, independence, and quality of life [5]. However, given the increasing number of available therapies for rehabilitation, a lack of consensus among measures compromises the possibility to fully optimise the clinical outcomes and to determine an appropriate level of evidence for treatments. For this reason, an accurate and comprehensive assessment is essential, to deeply analyse the factors influencing patients’ recovery and support the clinical decision for personalised treatment.

The growing tendency toward evidence-based medicine and data-driven rehabilitation promoted further interest in Clinical Decision Support Systems (CDSS) [6], showing among their functions and advantages the possibility to contain costs, bolster clinical workflow and efficacy, favour patients’ safety, support diagnosis, and promote treatment paths customisation. Within CDSS, knowledge-based and non-knowledge based systems can be distinguished, differentiating respectively in the use of evidence-based rules (determined on clinical experience or literature or patient-directed indications) or Artificial Intelligence (AI) algorithms. Despite the controversial aspects related to the reliability and safety of these systems, particularly important in clinical applications, the use of AI and Machine Learning (ML) for Intelligent Decision Support Systems is being widely explored [7].

For what concerns ML applications in post-stroke rehabilitation, research is still in a development phase, with extensively large numbers of studies evaluating longitudinal associations among features and discharge or long-term outcomes [8], and more limited studies dedicated to the development and validation of predictive models [9, 10, 11]. However, cross-validated ML models for prognosis of functional level on stroke cohorts are indeed generating a growing interest [12]. The analysis of the literature reveals a great heterogeneity both in the selection of predictors, often limited to the available scales in use in the setting, and outcome measures [12].

One of the most recurrently addressed functional outcomes is the Barthel Index (BI) scale [13], the gold standard tool for functional independence and basic daily living activities in the stroke population [14]. Among some examples in the literature, Sale et al. [15] worked on 3 Support Vector Machine (SVM) models with nested cross-validation on a cohort of 55 sub-acute post-stroke patients, aiming at a prediction of the BI score at discharge. The results indicated the great importance of the patients’ inflammatory and clinical descriptors at baseline and that the specific stroke aetiology does not significantly influence the results on the prediction (correlation coefficient: 0.75, Root Mean Square Error: 22.6, Mean Absolute Deviation Percentage: 84.0%). Lin et al. [16] obtained 0.72 (0.04) and 0.68 (0.03) on the average (standard error) sensitivity and specificity respectively on a cross-validated SVM model predicting a three-classed discretised BI score.

We are fully convinced that, for a reliable application of CDSS, the assessment of the generalisability of the proposed results is crucial. Such assessment, achieved by the implementation of proper validation approaches within the models, allows estimating how the solution will be accurate when processing new data. The same analysis of the literature reveals a limited use of external [17, 18, 19] or nested cross-validation approaches [15, 20], toward a more diffuse use of split-sample, bootstrap or non-repeated cross-validation methods. For this reason, the current study attempts to extend and generalise the results obtained by classical statistical analysis employing nested cross-validated ML algorithms, with a specific focus on the models' interpretability.

Finally, as previously mentioned, a commonly raised issue concerning the ethical use of ML is the lack of interpretability. Classical solutions are already known to provide model-based feature importance (e.g. regressions coefficients, Gini index in tree-based models, etc.…). Nevertheless, such rankings are built on the full dataset and are not patient-specific. In our work, we propose the use of Shapley values, via the Shapley Additive exPlanations (SHAP, [21]) technique, allowing us to provide clinicians with a patient-wise explanation of the prediction. A patient-specific interpretation analysis, explaining how single factors contribute to the outcome estimate for individual patients, would improve the quality of interaction with the clinical team. Providing details on the predictors contributions in the outcome estimation for each patient can make the data-driven solution worth of the clinicians’ trust [22, 23].

In synthesis, our aim is to cross-validate on a retrospective database an interpretable model targeting the modified Barthel Index at discharge after intensive post-stroke rehabilitation, analysing the contribution of each prognostic factor to the prediction through the use of the SHAP technique. This last analysis will give us the possibility to confirm the results obtained through statistics.

More at link.

No comments:

Post a Comment