Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Saturday, April 17, 2021

Blood-Based Markers Tied to Brain Cell and Memory Loss

 You'll want these tests as a baseline and to immediately start up your doctor's dementia prevention protocols if found. If your doctor doesn't have these prevention protocols you are screwed. All because of incompetence starting at the top with the board of directors not setting proper goals for the stroke department.  This exact same research should be done for stroke survivors but will never occur since we have NO STROKE LEADERSHIP.

Blood-Based Markers Tied to Brain Cell and Memory Loss

Another step closer to clinical utility for tracking neurodegeneration

Two proteins in blood -- plasma neurofilament light chain (NfL) and total tau -- were associated with cognition and neuroimaging outcomes, strengthening their potential as blood-based biomarkers of neurodegeneration, a large longitudinal study showed.

At baseline, NfL was more strongly associated with brain atrophy in multiple areas, white matter alterations, and changes in global cognition, reported Michelle Mielke, PhD, of the Mayo Clinic in Rochester, Minnesota. The combination of elevated NfL and total tau at baseline was more strongly associated with worse global cognition and memory loss and with neuroimaging measures, including temporal cortex thickness and increased number of infarcts.

However, total tau did not add to the prognostic value of NfL over the 6-year study, Mielke said.

The findings were reported in an abstract released in advance of the American Academy of Neurology annual meeting and will be presented as part of the meeting's Emerging Science program on April 18.

Previous research has linked elevated levels of plasma total tau and NfL with worse cognition and neuroimaging measures of cortical thickness, cortical atrophy, white matter hyperintensity, or white matter integrity, but have not compared the two proteins, Mielke noted. "The emergence of neurofilament light and total tau in recent years as candidate plasma biomarkers of neurodegeneration merits direct comparison of their relationships with cognition and neuroimaging," she told MedPage Today.

"It is important to understand which plasma neurodegeneration marker would be most useful for clinical trials and for diagnosis or prognosis in clinical settings," Mielke added. "Our results suggest that plasma NfL had better utility as a prognostic marker of cognitive decline and neuroimaging changes. Plasma total tau added some cross-sectional value to NfL in specific contexts related to memory performance."

Neurodegeneration, or brain cell loss, is characteristic of many disorders including Alzheimer's disease, vascular dementia, and Lewy body dementia. Causes and location of neurodegeneration in the brain vary with disease. "For example, in Alzheimer's disease, amyloid plaques and neurofibrillary tangles contribute to neurodegeneration and there tends to initially be more brain cell loss in the temporal lobe," Mielke said. "In vascular-related cognitive impairment, infarct, white matter hyperintensities, and microbleeds can contribute to cognitive changes."

In their study, Mielke and colleagues followed 995 participants in the community-based Mayo Clinic Study of Aging who had plasma NfL and total tau measurements, cognitive assessments, and neuroimaging data. Follow-up tests were repeated about every 15 months for a median of 6.2 years. Results were similar when researchers replicated their analyses in the multicenter Alzheimer's Disease Neuroimaging Initiative cohort of 387 people without dementia who were followed for a median of 3 years.

Having information about total tau did provide additional insights, Mielke pointed out. "For example, the combination of having both elevated NfL and total tau was more strongly associated with worse memory performance at the time of assessment," she noted. It may be useful to add measurements of total tau to NfL as a diagnostic tool, she suggested.

But "for prognosis purposes, neurofilament light better predicted the rate of neurodegeneration and cognitive decline, regardless of what the cause of neurodegeneration might be," Mielke said. NfL also may help determine how fast someone declines and how effective future therapies might be in slowing this decline, she added.

  • Judy George covers neurology and neuroscience news for MedPage Today, writing about brain aging, Alzheimer’s, dementia, MS, rare diseases, epilepsy, autism, headache, stroke, Parkinson’s, ALS, concussion, CTE, sleep, pain, and more. Follow

Disclosures

This research was funded by National Institutes of Health and National Institute on Aging grants, the GHR Foundation, and the Rochester Epidemiology Project.

 

No comments:

Post a Comment