Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Monday, September 11, 2017

Effect of explosion-puffed coffee on locomotor activity and behavioral patterns in Drosophila melanogaster - fruit flies

Good luck figuring this one out.

Effect of explosion-puffed coffee on locomotor activity and behavioral patterns in Drosophila melanogaster - fruit flies













Highlights

Contents of γ-aminobutyric acid (GABA) and 5-hydroxytryptophan (5-HTP) were increased by explosion puffing in coffee.
Explosion puffed coffee showed a sleep enhancement effect in Drosophila model.
Explosion puffed coffee showed the increase of transcript level on Rdl and GABA receptor.

Abstract

We hypothesized that the administration of explosion-puffed coffee, containing γ-aminobutyric acid (GABA) and 5-hydroxytryptophan (5-HTP), would be associated with a reduction of the caffeine effect on sleep behavior and behavioral patterns, which was investigated in a Drosophila model. The effects of feeding roasted coffee beans (RB), explosion-puffed coffee beans puffed at 0.75 MPa and 0.9 MPa (PB 7.5 and PB 9.0, respectively), or decaffeinated coffee beans (DeRB) on locomotor activity and behavioral patterns of Drosophila was analyzed. In the decreasing order, the total chlorogenic acid (caffeoylquinic acids, CQA) content was PB 7.5 > PB 9.0 > RB. PB content analysis showed high levels of GABA and 5-HTP, compared with that of RB, which corresponded with the sleep-wake behavior of Drosophila. The RB and PB (PB 7.5 and PB 9.0) groups were not significantly different with respect to an activity count during the subjective night and day period compared with the normal controls. Sleep bout numbers of the normal, PB, and DeRB groups showed significant differences as compared with the caffeine and RB groups (p < 0.05). The PB and DePB groups showed a significantly increased transcript levels for the GABA receptors compared to the caffeine group. The caffeine and RB groups displayed better climbing ability than the other groups, covering an average distance 6 cm in the related test; the average distance covered by the normal, PB 7.5, and DeRB groups was < 4 cm. The normal and DeRB groups showed similar behavior patterns with respect to total distance, velocity, moving, not moving, and meander. However, the PB 7.5 group significantly regulated not moving and meander of flies compared to flies receiving only caffeine and RB. Suppression of the stimulating effect of caffeine by explosion-puffed coffee administration was indicated in the above results, which can be attributed to the increased content of GABA and 5-HTP with explosive puffing process carried out at 0.75 MPa. Results of the underlying mechanism of the behavioral change patterns of explosive puffed with or without caffeine in Drosophila models, transcript level for the Dop1-R1 receptor in caffeine group was significantly higher than normal, PB, and DePB groups. Flies exposed to the caffeine had significantly decreased transcript levels for the GABA receptors. PB 7.5 and DePB showed higher level of GABA content than RB.

Keywords

Explosion puffed coffee
Decaffeinated coffee
Locomotor activity
Drosophila melanogaster

Choose an option to locate/access this article:

Check if you have access through your login credentials or your institution.

No comments:

Post a Comment