Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Wednesday, April 26, 2023

Choice of Arm Use in Stroke Survivors is Largely Driven by the Energetic Cost of the Movement

 I have no choice in the matter, the left arm/hand is worthless for anything. All because of spasticity, solve spasticity and I'll recover the left arm in no time.  I can't see how anything in this research is going to help survivors recover.

Choice of Arm Use in Stroke Survivors is Largely Driven by the Energetic Cost of the Movement

Abstract

Background

The decision of which arm to use to achieve a goal depends on energetic costs and performance abilities of each arm. Following a stroke, there is a reduction in the use of the more-impaired arm. Is it because the energetic costs of the more-impaired arm are increased, or because its use dictates a lower chance of success? (The answer is simple, the lower chance of success. Duh, and you needed research for that? Any survivor could have told you that!)

Objective

We sought to elucidate the impact of energetic cost and task success on the arm choice of stroke survivors.

Methods

Thirteen chronic stroke survivors and thirteen neurologically-intact subjects participated in an experiment where they reached towards visual targets in a virtual-reality environment. Energetic cost of reaching with their less-used arm (nondominant/more-impaired) was adjusted by amplifying the range of motion, while task accuracy requirement was independently modulated by changing target size.

Results

Reducing the energic cost of reaching increased the use of the less-used arms in both groups, but by a greater amount in the stroke survivors. In contrast, lowering task accuracy requirement altered arm choice similarly in the two groups. The time spent in decision-making (reaction time) reflected different impacts of energetic cost and task success on the arm choice of the two groups. Conversely, velocity changes were similar between the groups.

Conclusions

The impact of energetic cost on arm choice of stroke survivors is greater than neurologically-intact subjects. Thus, the reduction in the use of the impaired arm following stroke may be primarily due to a subjective increase in the effort it takes to use that arm.

Get full access to this article

View all access and purchase options for this article.


No comments:

Post a Comment