You really don't understand motivation at all; Do you? 100% EXACT STROKE REHAB PROTOCOLS will be enough motivation for anyone. Your patients will too busy counting reps and looking forward to recovery when done with the protocol. And you incorrectly tested this on healthy subjects and young persons besides.
Music meets robotics: a prospective randomized study on motivation during robot aided therapy
Journal of NeuroEngineering and Rehabilitation volume 15, Article number: 79 (2018)
Abstract
Background
Robots have been successfully applied in motor training during neurorehabilitation. As music is known to improve motor function and motivation in neurorehabilitation training, we aimed at integrating music creation into robotic-assisted motor therapy. We developed a virtual game-like environment with music for the arm therapy robot ARMin, containing four different motion training conditions: a condition promoting creativity (C+) and one not promoting creativity (C–), each in a condition with (V+) and without (V–) a visual display (i.e., a monitor). The visual display was presenting the game workspace but not contributing to the creative process itself. In all four conditions the therapy robot haptically displayed the game workspace. Our aim was to asses the effects of creativity and visual display on motivation.
Methods
In a prospective randomized single-center study, healthy participants were randomly assigned to play two of the four training conditions, either with (V+) or without visual display (V–). In the third round, the participants played a repetition of the preferred condition of the two first rounds, this time with a new V condition (i.e., with or without visual display). For each of the three rounds, motivation was measured with the Intrinsic Motivation Inventory (IMI) in the subscales interest/enjoyment, perceived choice, value/usefulness, and man-machine-relation. We recorded the actual training time, the time of free movement, and the velocity profile and administered a questionnaire to measure perceived training time and perceived effort. All measures were analysed using linear mixed models. Furthermore, we asked if the participants would like to receive the created music piece.
Results
Sixteen healthy subjects (ten males, six females, mean age: 27.2 years, standard deviation: 4.1 years) with no known motor or cognitive deficit participated. Promotion of creativity (i.e., C+ instead of C–) significantly increased the IMI-item interest/enjoyment (p=0.001) and the IMI-item perceived choice (p=0.010). We found no significant effects in the IMI-items man-machine relation and value/usefulness. Conditions promoting creativity (with or without visual display) were preferred compared to the ones not promoting creativity. An interaction effect of promotion of creativity and omission of visual display was present for training time (p=0.013) and training intensity (p<0.001). No differences in relative perceived training time, perceived effort, and perceived value among the four training conditions were found.
Conclusions
Promoting creativity in a visuo-audio-haptic or audio-haptic environment increases motivation in robot-assisted therapy. We demonstrated the feasibility of performing an audio-haptic music creation task and recommend to try the system on patients with neuromuscular disorders.
Trial registration
ClinicalTrials.gov, NCT02720341. Registered 25 March 2016, https://clinicaltrials.gov/ct2/show/NCT02720341
No comments:
Post a Comment